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An improved random forest algorithm for tracing  
the origin of metastatic renal cancer tissues

HaiDong Li1, Tao Xie2*

A b s t r a c t

Introduction: Tracing the histological origin of metastatic renal cancer 
(MRC) and locating the pathological root cause lead to precise treatment 
and improved prognosis.
Material and methods: A total of 3336 patient cases with clear tissue origins 
from The Cancer Genome Atlas (TCGA) database were screened as experi-
mental data material and feature selection was performed using the differ-
ential expression method; the random forest (RF) algorithm was improved 
to establish a medical retrospective heterogeneous filtered feature selection 
random forest weighted (ReliefFk_RFw) model to locate tissue origins.
Results: The differential expression analysis method screened 60 signature 
genes with good differential expression for tracing tissue origins (kidney 
renal clear cell carcinoma, kidney renal papillary cell carcinoma, lung ade-
nocarcinoma, lung squamous cell carcinoma, liver hepatocellular carcinoma, 
pancreatic adenocarcinoma). Compared with traditional machine learning 
(support vector machine, decision tree, RF) models, the ReliefFk_RFw algo-
rithm increased the average accuracy from 98.65%, 98.79% and 98.57% to 
99.53%, the average precision from 95.58%, 96.40% and 96.54% to 99.36%, 
and the average sensitivity from 97.03%, 96.61% and 96.76% to 98.89%, 
mean specificity from 99.50%, 99.39% and 99.35% to 99.90%, and mean 
F1 score from 96.30%, 96.50% and 96.64% to 99.11%. The highest accura-
cy in localizing the origin of primary pancreatic cancer was achieved with 
100.00% for different models of retrospective metrics.
Conclusions: The improved ReliefFk_RFw model is best for comprehensive 
assessment and can be used to trace the origin of MRC tissue to assist phy-
sicians in diagnosis and treatment.

Key words: metastatic renal cancer, tissue origin tracing, ReliefFk_RFw 
algorithm, differential expression analysis, TCGA database.

Introduction

Metastatic renal cancer (MRC) remains unlocated after a  face-to-
face examination and there are no primary tumour features in the 
kidney [1]. More than 60% of tumours are associated with malignant 
metastases after the first consultation, of which approximately 10% 
metastasise to the patient’s kidney [2]. MRC accounts for 1% to 1.5% of 
all malignant clinical cases [3], ranking 13th in malignancy [4] and 7th in 
mortality and recurrence rates [5]. Afrit et al. reported that the average 
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survival time of patients with MRC after multiple 
consultations was 3.8 months, with a 1-year sur-
vival rate of 18.7%; 5-year survival rate of 4.1% 
and 10-year survival rate of 2.8%. The authors 
concluded that prognostic status was governed 
by the tumour’s domination by the biology of 
the primary tissue [6]. Metastasectomy and/or 
targeted therapies may play role in prolonging 
short-term survival rates but unfortunately can-
not ensure a complete cure from metastatic can-
cer [7, 8]. Therefore, tracing the tissue origin of 
MRC is crucial for physicians to design treatment 
plans, enabling precise treatment and improving 
patient prognosis.

Metastatic kidney cancer is histologically het-
erogeneous and physicians are unable to improve 
the pathological mechanism of the tumour, which 
often leads to misdiagnosis and underdiagnosis. 
Immunohistochemistry is not only used as a con-
comitant immunosuppressant in steroid-depen-
dent nephrotic syndrome [9] but is also the most 
commonly used clinical method to locate the 
primary tumour and can provide a  practical ref-
erence for physicians in diagnosis and treatment 
[10]. However, at present, immunohistochemistry 
methods rely on small sample data, are labour-in-
tensive, have moderate classification accuracy, 
and have high breakthrough costs, which need to 
be improved [11]. Computed tomography (CT) and 
positron emission tomography (PET) can be used 
to identify the origin of cancer tissue using med-
ical imaging techniques with relative ease and 
speed, but with an accuracy of only 20–27% and 
24–40%, the performance needs to be improved 
[12]. Therefore, the development of a  new, effi-
cient and convenient method to probe the patho-
logical origin of cancer appears urgent and neces-
sary in clinical applications.

A  related study reported that metastatic can-
cer foci could not replicate the structural features 
of the primary tumour but could still carry the 
gene expression profile of the original tissue. Lu 
et al. screened 80 differentially expressed genes 
(DEGs) by raw signal analysis and constructed 
three medical prediction models – random forest 

(RF), support vector machine (SVM) and neural 
network – then used them to distinguish four 
types of squamous cell carcinoma to trace the 
tissue origin of metastatic cervical cancer [13]. 
By analysing gene expression profiles, Wang  
et al. constructed a database containing 96 spe-
cific genes; the database was screened for key 
genetic information to produce molecular mark-
ers, followed by inference of the tissue origin of  
22 common metastatic malignancies [14]. Zhao 
et al. trained a  one-dimensional convolution-
al neural network medical prediction model to 
classify the primary tumour database to locate 
the tissue origin of unknown primary carcinoma 
(CUP) by constructing a one-dimensional convo-
lutional neural network [15]. It is evident that the 
use of machine learning methods to construct 
medical tracing models and map gene expression 
profiles to infer the tissue principles of malignant 
tumours has become a popular aid to diagnosis 
and treatment. The incidence of metastasis to the 
kidney varies among different sites of malignan-
cy, with lung adenocarcinoma, lung squamous 
cell carcinoma, liver hepatocellular carcinoma and 
pancreatic adenocarcinoma having a total metas-
tasis rate of 45–65% and being the main malig-
nant origin of MRC [16]. Therefore, the study will 
analyse data on gene expression of primary and 
MRCs from a bioinformatics perspective and con-
struct five machine learning models to pinpoint 
the malignant origin of cancer.

Material and methods

Data collection and preparation

The study screened tumour samples of clear 
malignant origin from The Cancer Genome Atlas 
(TCGA) with the following data selection terms: 
Disease Type = Kidney renal clear cell carcinoma, 
Program Name = TCGA or TARGET, Data Category. 
The gene expression library (Table I) was construct-
ed from samples identified as primary malignant 
tumours (sample type number=”01”) and routine 
samples (sample type number=”11”). Osteosarco-
ma routine samples are missing, so they are not 

Table I. Gene expression library

Cohort  
abbreviation

Tumour type Total Case Control

Code = 01 Code = 11

KIRC Kidney renal clear cell carcinoma 602 530 72

KIRP Kidney renal papillary cell carcinoma 320 288 32

LUAD Lung adenocarcinoma 572 513 59

LUSC Lung squamous cell carcinoma 550 501 49

LIHC Liver hepatocellular carcinoma 1204 1091 113

PAAD Pancreatic adenocarcinoma 88 64 24

total 6 3336 2987 349
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included in the gene expression library. Finally, the 
mapping data of Gene Symbol and ENSG_ID were 
downloaded from GENCODE (https://www.genco-
degenes.org/human/) and ENSG_ID was mapped 
to Gene Symbol uniformly [14].

RNA-Seq genetic data from patients should be 
standardised and normalised to include as many 
pathological subtypes as possible when tissue in-
formation with clear heterogeneity is present. The 
gene expression library (Table I) includes 6 (kidney 
renal clear cell carcinoma, kidney renal papillary 
cell carcinoma, lung adenocarcinoma, lung squa-
mous cell carcinoma, liver hepatocellular carci-
noma, pancreatic adenocarcinoma) tissue types 
and 3336 tissue samples of clear origin (including 
routine samples around the primary cancer), rang-
ing from 88 to 1024 for each tissue sample. Each 
tissue sample was manually grouped, with the pri-
mary tissue screened as the case group (sample 
type number = “01”) and the conventional tissue 
at the edge of the primary cancer as the control 
group (sample type number = “11”).

Traditional modelling methods

SVM model

An SVM is a binary classification model whose 
basic model is a linear classifier defined by max-
imising the interval on the feature space, which 
distinguishes it from a perceptron; SVMs also in-
clude kernel tricks, which make them essentially 
non-linear classifiers. The learning algorithm for 
SVM is the optimisation algorithm for solving con-

vex quadratic programming. As in Figure 1, sup-
port vectors (SV) are used to limit the width of the 
model edges. The core idea of the SVM is to divide 
the input fields into 2 sets of vectors in a multidi-
mensional space and construct a  hyperplane to 
separate the input vectors, which maximizes the 
boundary between the 2 sets of input vectors [17].

Decision tree (DT) model

A DT is a model that presents decision rules and 
classification results in a tree-like data structure. As 
an inductive learning algorithm, the focus is on tak-
ing seemingly disordered and disorganised known 
data and transforming them by some technical 
means into a tree model that can predict unknown 
data. Each path in the tree from the root node (the 
attribute that contributes most to the final classifi-
cation result) to a leaf node (the final classification 
result) represents a rule for making a decision. The 
DT diagram (Figure 2) is as follows [18, 19].

Class 1

Class2

Support vectors
Hyperplane

Margin

Figure 1. SVM schematic diagram
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Figure 2. DT schematic diagram
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1.  Firstly, from the start position, divide all the 
data into one node, the root node.

2.  Then go through the two steps in orange, with 
the orange indicating the judgement condition.

3.  If the data are the empty set, jump out of the 
loop. If the node is the root node, return null; 
if the node is an intermediate node, mark the 
node as the class with the most classes in the 
training data.

4.  If the samples all belong to the same class, skip 
the loop and the node is marked as that class.

5.  If none of the judgment conditions marked in 
orange jump out of the loop, the node is con-
sidered for division. Since this is an algorithm, 
the division should not be done arbitrarily, but 
with efficiency and accuracy, choosing the best 
attribute division under the current conditions.

6.  After going through the division in the previ-
ous step, a new node is generated, and then the 
judgment condition is cycled, and new branch-
ing nodes are continuously generated until all 
nodes have jumped out of the loop.

7. End. This results in a DT.

RF model

RF is an ensemble learning algorithm of the 
bagging type, which combines multiple weak clas-
sifiers (DTs) and the final result is obtained by vot-
ing or taking the mean, making the overall model 
result highly accurate and generalisable, as shown 
in the structure below (Figure 3) [20]. Its good re-
sults can be attributed to ‘random’, which allows 
it to resist over-fitting, and ‘forest’, which makes it 
more accurate [21].

Improved RF modelling approach

Improved Relief (ReliefFk) algorithm

The binary filtered feature selection (Relief) al-
gorithm can be used to solve the feature weight 
calculation in binary classification problems. Re-
liefF is an optimisation of Relief that can be used 
in multi-classification scenarios [22]. In this sec-
tion, the ReliefF algorithm is incorporated into the 
feature selection step of the RF construction DT, 
which can initially remove some of the features 
that negatively affect the model, and can also be 
used to alleviate the problem of false high or low 
classification accuracy caused by imbalance in 
medical data.

The core idea of the Relief algorithm is to use 
the correlation between positive (1) and negative 
classes (0) and features as a  reference basis for 
assigning specific weights to each feature at-
tribute. The basic idea is that the feature is pre-
ferred, a random sample is selected from the test 
set, the most similar sample of the same type 
(same spe) and the most similar sample of the dif-
ferent class (diff spe) are selected, and the mean 
distance between the feature and the same spe 
and diff spe samples is calculated successively. 
If there is a difference in the mean distance be-
tween the two classes, it means that the feature 
has a strong ability to differentiate between the 
samples of the current class. Conversely, if the 
mean distance values are the same or similar, it 
means that the distinguishing ability needs to be 
improved, and the weight of the feature should be 
reduced. The formula for calculating the weights 
can be expressed as [22, 23]:

DataSet

Decision Tree-1 Decision Tree-2 Decision Tree-N

Result-1 Result-2 Result-N

Majority Voting/Averaging

Figure 3. RF structure
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where W (a) is the feature a weight.
The ReliefF algorithm is a modification of the 

Relief algorithm, based on which a multi-catego-
risation strategy is added. The basic idea is that 
instead of taking positive and negative samples, 
a  sample is taken from each category and the 
weights of the features are calculated and updat-
ed. This not only solves the multi-category prob-
lem, but also indirectly reduces external noise 
interference and improves the stability of the al-
gorithm. The weighting formula is updated to [22]:
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p(C) is the proportion of class C samples in the 
original data, Mj(C) is the j nearest neighbour sam-
ple in class C ∉ class(r), and diff(a, r1, r2) represents 
the difference in distance between samples r1 and 
r2 on feature a, which can be expressed as [23]:
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From Equation (3), the ReliefF algorithm av-
erages the distance differences between the k 
samples closest to x

i
 in heterogeneous class C on 

feature a and multiplies this by the proportion of 
heterogeneous class C samples to all heterogene-
ous samples from x

i
. This operation is repeated for 

all heterogeneous samples from x
i
, resulting in the 

mean value of the distance differences between 
samples in heterogeneous class C on feature a.  
W = {w1, w2, w3,..., w

n
} is the weight vector ob-

tained by the ReliefF algorithm, and the features 
are sorted in reverse order by weight value.

The improved idea of the ReliefF algorithm is for 
the multi-category problem. The algorithm uses 
random function for random sampling among dif-
ferent categories of samples, which can achieve 
a better anti-noise interference effect and main-
tain certain stability under normal circumstances. 
In practice, however, the mean distance between 
heterogeneous samples and features a is large, 
and the mean distance between similar samples 
and features a is small; therefore, it is mainly the 
heterogeneous sample values that open up the 
weight gap (mean distance difference) and guar-

antee the stability of the weight gap. Therefore it 
is also necessary to slightly improve the sampling 
steps of the algorithm to obtain the ReliefFk algo-
rithm: reduce the sampling weight of similar sam-
ples, increase the sampling weight of each class 
of heterogeneous samples, stabilize and refine the 
distance mean between heterogeneous samples 
and feature a, in order to allow a variety of heter-
ogeneous samples with high decision power. The 
specific implementation steps are: Assume that n 
is the number of samples in the medical training 
set, where the number of positive class samples 
is n+ and the number of negative class samples 
is n_. Let the initial number of nearest neighbour 
samples in the training set be k, the number of 
nearest neighbour like samples be k1, the number 
of nearest neighbour dissimilar samples be k2 and 
the initial k1 = k, k2 = k. If sample r is a positive 
class, then k1 and k2 can be expressed as:

1 * nk k
n n

+

+ −

=
+

, (4),
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When the sample taken r is a  negative class, k1 
and k2 can be expressed as

1 * nk k
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−
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+

, (6),

2
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= , (7).

When calculating the weights of the characteris-
tics a, the number of samples of the two catego-
ries of similarity and dissimilarity is changed from 
k to k1 and k2 respectively, and k1 < k, k2 > k; this 
theoretically reduces the proportion of samples of 
similarity and increases the proportion of samples 
of dissimilarity in each category, giving more de-
cision power to the dissimilar samples and guar-
anteeing the stability of the distance difference 
(characteristic weights). The improved weighting 
formula is as follows.
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Heterogeneous filtered feature selection 
random forest (ReliefFk_RF) algorithm

As shown in Figure 4, the ReliefFk algorithm 
is incorporated into the RF algorithm to form 
the new algorithm ReliefFk_RF algorithm: first-
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ly, the formula for calculating the weights of the 
ReliefF algorithm is modified (reducing the sam-
pling weight of similar samples k1 and increasing 
the sampling weight of each class of dissimilar 
samples k2), then some of the attribute features 
that have no effect on the classification results 
are initially screened out, and the remaining at-
tribute features are ranked by their weights, and 
the training subset of the attributes of the train-
ing subset are divided equally into three intervals 
of high, medium and low weights. When RF enters 
the DT construction step, a subset of features with 
uniform classification effect is used to train the 
DT, and the set of features in the three intervals 
is drawn evenly, which can effectively avoid too 
many redundant features being repeatedly drawn, 
reduce the trouble of poor classification perfor-
mance and enhance DT stability.

As shown in Figure 4 above, the model per-
forms bootstrap sampling of the dataset to obtain 
various training subsets and OOB test sets (the 
out-of-bag dataset can be used for final model 
evaluation); the extracted dataset is then sorted 

by the weights of the ReliefFk features to obtain 
the set of features with the attribute weights. The 
larger the weights of the features, the higher is 
the classification performance. The sorted attri-
bute features are divided into three classes (high, 
medium and low) according to their classification 
performance. When the DT is constructed, the tra-
ditional form of random sampling is discarded and 
the features are drawn equally in the set of three 
classes to evenly consider the classification per-
formance of each class of attributes and indirectly 
guarantee DT stability. The DT is constructed by 
continuously extracting features in sequence for 
multiple training subsets to form the final RF, and 
the algorithm1 pseudo-code is as follows (Algo-
rithm 1).

The aim of the ReliefFk_RF algorithm is to mod-
ify the formula for calculating the weights of the 
ReliefF algorithm to remove the features that are 
not useful for the overall classification effect; then 
the remaining features are evenly differentiated 
according to their weights, so that the features in 
each weight range can be evenly sampled during 

Bootstrap 
sampling

Training subset 1

是

Algorithm 
evaluation

Data 
set

Training set
OOB

（test set）

high middle low

Training Subset 2

DT 
DT 

…RF  construction

Uniform extraction 
high school

Features in the low 
set

The ReliefFk 
algorithm will be 

special
The levy is sorted by 

weight

high middle low

Figure 4. Flowchart of ReliefFk algorithm integrated into RF algorithm
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DT construction, effectively avoiding too many re-
dundant features being repeatedly selected, and 
also indirectly alleviating the problem of false high 
or false low classification accuracy, and stabilizing 
the DT accuracy.

Heterogeneous filtered feature selection 
random forest weighted (ReliefFk_RFw) 
algorithm

The traditional RF assumes equal weights for 
each DT, ignoring the variability among DTs. Based 
on this, this paper proposes a DT error weighting 
of the previous ReliefFk_RF algorithm to obtain 
the ReliefFk_RFw algorithm, with the weighting 
formula for a single DT as [24]:

2
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1/ ( )( )
1/ ( )

T

j

iw i
j

=

=

∑
l

l
, (9)

where w(i) is the weight of the i-th DT and I2(i) is 
the variance of the difference between the pre-
dicted and actual points in the training set of the 
i-th DT. A  larger value of I2(i) represents a  lower 
stability of DT prediction, so the weight is small-

er. The DT weighting parameters proposed in the 
study satisfy the normalisation feature [24].

2
2

1

2 21 1

1 1

1/ ( )
1/ ( )( ) 1
1/ ( ) 1/ ( )

T

T T
i

T T
i i

j j

i
iw i

j j

=

= =

= =

 
 
 = = =
 
 
 

∑
∑ ∑

∑ ∑

l
l

l l

, (10)

The ReliefFk_RFw algorithm regression algo-
rithm process is:
(1)  Generate multiple stable DTs using the Relief-

Fk_RF algorithm.
(2)  When training the i-th DT, the distance vari-

ance I2(i) between all predicted and actual 
points in the DT is calculated and the weight 
values are obtained as:

2

2

1

1/ ( )( )
1/ ( )

T

j

iw i
j

=

=

∑
l

l
, (11).

(3)  The weighted predicted value û(x) of the Re-
liefFk_RFw algorithm is expressed as:

$
1

( ) ( )
T

i
i

u x w i Y
=

=∑ , (12).

Where Y
i is the initial predicted value of the i-th 

tree DT.

Model evaluation indicators

Accuracy, precision, sensitivity, specificity and 
F1 Score were used to measure the classification 
ability of a machine learning model. The larger the 
value of each index is, the better the model eval-
uation effect will be. The index value interval is 
[0,1]. The formula is as follows [25, 26]:

accuracy = (TP + TN)/(TP + FN + FP + TN), (13)

precision = TP/(TP + FP), (14)

sensitivity = TP/(TP + FN), (15)

specificity = 
TN

(TN + FP), (16)
F1 = 2(precision × sensitivity)/
(precision + sensitivity), (17).

Where TP is the number of positive cases pre-
dicted correctly, TN is the number of negative cas-
es predicted correctly, FP is the number of positive 
cases predicted incorrectly, and FN is the number 
of negative cases predicted incorrectly [27]. F1 
Score is the weighted average of the precision 
rate and sensitivity of the machine learning mod-
el, taking into account the precision rate and sen-
sitivity of the model classification [28].

Algorithm1: ReliefFk_RF Core steps pseudo-code

Input: Training set D;
         Sampling frequency m, initial m = 10;
          Characteristic dimension n, feature weight set W

i
 

Initially null;
          k, k1, k2 are the number of nearest neighbour 

samples drawn from each of the D categories.
Output: Set of highly differentiated features W

h
;

          Feature set of medium distinction W
m
;

          Low distinction feature set W
l
.

1. Set all feature weights W
i
. = 0, i = 1,2,…,n to 0;

2. for i = 1 to m do
1)  A single sample is randomly selected from D set r;
2)  Find k1 nearest neighbour Hj(j = 1,2,…,k) samples 

from the similar sample set of r, k2 nearest 
neighbour Mj(C) samples are found from the 
heterogeneous sample set of r;

3)  for a = 1 to n (all features) do
Updating feature weights with ReliefF algorithm:
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4) end;
3. end;
4. Delete the feature with a weight of 0;
5. W

h
 = W

i
, i = 1,2,…, n/3;

    W
m
 = W

i
, i = n/3 + 1,…, 2n/3;

    W
l
 = W

i
, i = 2n/3,…, n;
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Results

Characteristic gene selection

At the initial stage of the study, there were 
69,672 genes, which was of low representative-
ness. The T. est function was used to calculate 
the difference between each gene in primary 
tissue (group1=case) and normal control tissue 
(group2=control not determined). After that, the 
p.adjust function was called to calculate the fixed 
significance FDR of each gene and evaluate the 
differences of each gene. The Venn diagram (Fig-

ure 5) shows the DEG data relationship among 
six types of cancer. KIRC, KIRP, LUAD, LUSC, LIHC 
and PAAD contain 11493, 4433, 7447, 10530, 
6253 and 3439 DEGs respectively. A total of 4930 
(KIRC), 495 (KIRP), 1060 (LUAD), 2752 (LUSC), 
1466 (LIHC), and 1234 (PAAD) “specific” DEGs 
were included in the differential expression infor-
mation (only significantly expressed in one malig-
nancy, Figure 5).

The “specific” DEGs in the top 5% of cancer 
differential expression values were extracted  
(247 KIRC, 25 KIRP, 53 LUAD, 138 LUSC, 74 LIHC 

Figure 5. Venn diagram of DEGs
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and 62 PAAD, for a  total of 599 “specific (the 
“DEGs”). The genetic information following signa-
ture gene selection was genetic data for signifi-
cant differences between each primary cancer and 
conventional controls, and the ‘signature’ DEGs 
were mutually exclusive between cancer types.

Model construction

Variable definitions: The independent variables 
consist of 599 ‘specific’ DEGs, all numeric vari-
ables. The dependent variable is cancer type and 
is named cancerType, which is a multicategorical 
variable, coded as KIRC = 1, KIRP = 2, LUAD = 3, 
LUSC = 4, LIHC = 5, PAAD = 6 in that order.

The initial genetic attribute information is in 
vertical coordinates and the data relationships are 
inverted. The information matrix was transposed 
using the T function and the train_test_split func-
tion was called 7/3 (70% as the training set and 
30% as the validation set [29]) to split the data-
set and serve subsequent experiments. Medical 
tracing models were constructed using SVM, DT, 
RF, and ReliefFk_RFw models, and the classifica-
tion performance of the models was evaluated 
by accuracy, precision, sensitivity, specificity and 
F1 Score metrics. Finally, the best medical tracing 
models were selected, the reasons for their supe-
riority explained, and “specific” DEGs influencing 
the tissue origin of MRC derived.

Analysis of model results

We used the modified best trace ReliefFk_RFw 
model to train the real tissue origin dataset to ob-
tain a score table of the importance of “specific” 
DEGs’ expression in determining the primary loca-
tion of MRC (Table II). The top 10 “specific” DEGs 
of KIRC are ANXA2R, RP11-69E11.4, ATG16L2, 
TNFRSF4, DPRXP4, SAMD3, AL358340.1, COL4A5, 
PRRT2, and AC008735.1. The top 10 “feature” 
DEGs of KIRP are RASGRF2, DNM1, ASAP2, NR2F1, 
RASD1, TMEM204, PCDH1, THY1, MEIS3, TBX2 
in order. The top 10 “specific” DEGs of LUAD are 
ACY3, ZNF239, DDIT4L, AL121949.1, FAM53A, FGB, 
KRTAP5-1, HMGB3, DOK5, and RASGEF1A. The top 
10 “specific” DEGs of LUSC are TRIM16L, AP3B2, 
RN7SL399P, SERPINB13, TMEM117, AC009118.2, 
SFTA3, ETNK2, NAP1L4P2 and CERS3. The top 
10 “characteristic” DEGs of LIHC are KCNK15, 
SMYD3, CIT, CLIP4, TNFSF4, GNAL, CRYAB, BOC, 
CEMIP, DMD. The top 10 “feature” DEGs of PAAD 
are DZIP1, FLRT3, NEK11, ZNF185, KCNJ16, SFRP1, 
NPR1, HAGHL, GALNT14, NR1H4. The above 60 
“specific” DEGs have a  strong influence on the 
localization of primary tumour in MRC, and can 
guide the diagnosis and treatment of metastatic 
disease (Table II).

In the genetic data set, SVM, DT, RF and Relief-
Fk_RFw models all had good predictive effects, and 
the quantitative evaluation indexes are shown in 

Table II. Importance score of “feature” DEGs’ attribute

KIRC(DEGs) Score KIRP(DEGs) Score LUAD(DEGs) Score

ANXA2R 7.20E-02 RASGRF2 2.78E-01 ACY3 1.77E-02

RP11-69E11.4 1.82E-02 DNM1 8.29E-03 ZNF239 6.21E-04

ATG16L2 1.32E-02 ASAP2 4.54E-03 DDIT4L 5.99E-04

TNFRSF4 4.39E-03 NR2F1 1.38E-03 AL121949.1 4.57E-04

DPRXP4 4.28E-03 RASD1 8.28E-04 FAM53A 3.59E-04

SAMD3 4.01E-03 TMEM204 4.55E-04 FGB 3.24E-04

AL358340.1 2.79E-03 PCDH1 3.81 E-04 KRTAP5-1 2.88E-04

COL4A5 2.04E-03 THY1 2.52E-04 HMGB3 2.41E-04

PRRT2 1.29E-03 MEIS3 2.43E-04 DOK5 1.79E-04

AC008735.1 1.01E-03 TBX2 2.03E-04 RASGEF1A 1.29E-04

LUSC(DEGs) Score LIHC(DEGs) Score PAAD(DEGs) Score

TRIM16L 9.09E-02 KCNK15 2.09E-02 DZIP1 2.12E-02

AP3B2 6.76E-02 SMYD3 1.87E-02 FLRT3 1.22E-02

RN7SL399P 3.44E-02 CIT 1.58E-02 NEK11 9.36E-03

SERPINB13 2.78E-02 CLIP4 9.34E-03 ZNF185 8.21E-03

TMEM117 2.26E-02 TNFSF4 8.91E-03 KCNJ16 7.32E-03

AC009118.2 1.89E-02 GNAL 5.48E-03 SFRP1 5.09E-04

SFTA3 1.77E-02 CRYAB 1.59E-03 NPR1 1.76E-04

ETNK2 1.09E-02 BOC 7.85E-04 HAGHL 7.57E-04

NAP1L4P2 8.78E-03 CEMIP 7.81E-04 GALNT14 7.21E-04

CERS3 8.21E-03 DMD 7.42E-04 NR1H4 5.42E-04
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Tables III and IV. The model performance evalua-
tion results showed that the ReliefFk_RFw model 
had the highest accuracy score (99.53% on aver-
age), which increased by 0.88%, 0.74% and 0.96% 
compared with SVM, DT and RF, respectively. The 
ReliefFk_RFw model has the highest precision eval-
uation results except LIHC, and the average score 
of the ReliefFk_RFw model is up to 3.78%, 2.96% 
and 2.82% compared with SVM, DT and RF respec-
tively. In the specificity evaluation results, the Re-
liefFk_RFw model had the highest score (99.90%) 
except LIHC, which was higher than RF (99.35%), 
DT (99.39%) and SVM (99.50%). The ReliefFk_RFw 
model had the highest score in the sensitivity and 
F1 Score evaluation results of 6 kinds of malignant 
tumours. In summary, the ReliefFk_RFw model has 
the best comprehensive performance among the 
5 evaluation results, followed by RF, DT and SVM. 
The reason is that SVM, based on regression, is 
unable to process nonlinear and highly correlated 
data information. In this study, there was a biologi-
cal correlation between genetic attribute variables, 
so the model was not effective. The RF algorithm 
can process nonlinear highly correlated data, and 
effectively overcome the defect of the easy fitting 
DT single tree, so the overall effect of the model 
has been improved to a certain extent.

The RF algorithm has several drawbacks when 
processing data with a large and unbalanced num-
ber of features: first, the excessive number of fea-

tures has a certain degree of redundancy, which 
may have a negative impact on the model predic-
tion results, and thus disturb the training ability 
of the medical prediction model [22]. Second, it 
is easy to unbalance the selection of high-weight 
features or low-weight features during the con-
struction of the model DT, resulting in false high 
classification and low classification accuracy, and 
unstable and unrepresentative results [22]. Third, 
after DT construction by the traditional RF model, 
the default DT weight is equal and the difference 
between DTs is ignored, resulting in low overall 
accuracy [24]. Based on this, the improved ReliefF 
algorithm was used in this study to sort features 
according to their weights, extract feature subsets 
stratified according to the weights of features, 
construct the CART tree for feature selection, then 
reweight, and construct the optimized ReliefFk_
RFw medical prediction model. Data presented in 
Tables III and IV show the best evaluation effect.

The results of cancer prediction (horizontal 
view of Tables III and IV) showed that the trac-
ing effect of PAAD tissue origin was the best, with 
each evaluation index reaching 100% under dif-
ferent models. LIHC came in second, but LUSC and 
KIRP needed to improve their precision, sensitivi-
ty and F1 Score (as low as 90.20%). According to 
the comprehensive data results, there were mis-
judgements between LUSC and LUAD due to the 
pathological similarities, and KIRP and KIRC were 

Table III. Comparison of machine learning classification performance

Type Accuracy (%) Precision (%)

SVM DT RF ReliefFk_RFw SVM DT RF ReliefFk_RFw

KIRC 97.82 98.24 97.98 99.21 96.11 98.04 97.04 98.29

KIRP 97.83 98.44 97.21 99.05 92.28 94.23 92.55 100.00

LUAD 99.02 98.24 98.38 99.52 95.04 93.51 94.80 99.25

LUSC 98.09 98.59 98.29 99.55 90.20 94.24 94.84 99.33

LIHC 99.11 99.23 99.58 99.82 100.00 98.38 100.00 99.29

PAAD 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Ave 98.65 98.79 98.57 99.53 95.58 96.40 96.54 99.36

Table IV. Comparison of machine learning classification performance

Sensitivity (%) Specificity (%) F1 score (%)

SVM DT RF Relief-
Fk_
RFw

SVM DT RF Relief-
Fk_
RFw

SVM DT RF Relief-
Fk_
RFw

95.44 96.26 95.62 99.39 99.21 99.28 99.09 99.81 95.77 97.14 96.32 98.84

95.09 94.23 95.12 95.22 99.24 99.44 99.21 100.00 93.66 94.23 93.82 97.55

98.51 96.09 96.20 99.52 99.09 98.82 99.09 99.90 96.74 94.78 95.49 99.38

94.33 94.89 94.62 99.20 99.44 98.89 98.68 99.78 92.22 94.56 94.73 99.26

98.78 98.21 98.99 100.00 100.00 99.88 100.00 99.92 99.39 98.29 99.49 99.64

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

97.03 96.61 96.76 98.89 99.50 99.39 99.35 99.90 96.30 96.50 96.64 99.11
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also difficult to distinguish due to similar tissues. 
Because the differentiation of such interference 
depends heavily on the type and amount of input 
genetic data, misclassification is also common in 
the absence of multi-class and multi-number ex-
perimental queues.

Discussion

In this study, the ReliefFk_RFw model was cre-
ated by rewriting the pseudo-code at the bottom 
of the algorithm, and the effects of the primary 
tissue of MRC were compared with the SVM, DT 
and RF models. The ReliefFk_RFw model has the 
best overall evaluation results, which effectively 
verifies the existing hypothesis that “metastatic 
tissue retains genetic characteristics of origin”, 
and can assist in guiding clinical diagnosis and 
treatment. Faced with diagnosis of MRC, physi-
cians can create an improved ReliefFk_RFw mod-
el, input patient-specific “DEGs” in order of impor-
tance, and evaluate the output by classification 
to locate the primary origin of metastatic tissue. 
Assuming that the output was cancerType=4 (pri-
mary origin =LUSC), the physician recommended 
a combination treatment regimen dominated by 
lung squamous cell carcinoma and assisted by 
kidney cancer, and was on high alert for re-me-
tastasis of tissue origin during follow-up. The clin-
ical treatment plan and follow-up plan are devel-
oped according to the specific disease occurrence 
of patients and doctors’ experience. The output 
results of this study model are only for auxiliary 
reference.

This study combined machine learning and 
differential expression analysis techniques to 
initially screen out “specific” DEGs to reduce the 
model prediction dimension, increase the data 
relevance, and effectively improve the accuracy of 
tracing results. Although the traditional machine 
learning model can carry out feature screening, 
its understanding of bioinformatics information 
is only at the data level, unable to analyse the 
correlation of genetic data, so the traceability 
performance is limited. Differential expression 
analysis could select 599 “specific” DEGs with 
significant expression from 69,672 genetic genes 
of the initial malignant tumour according to the 
up-down-regulated gene scores of fixed cancer. 
Selected “specific” DEGs can control the physio-
logical mechanism and biological development 
form of cancer, and are the main driving force for 
regulating the life activity process of cancer cells 
[30]. At the initial stage of the study, differential 
expression analysis can effectively distinguish the 
biological differences between different primary 
cancers and surrounding conventional tissues; at 
the middle stage, the machine learning algorithm 
can distinguish the genetic differences between 

different primary cancers; at the later stage, the 
improved ReliefFk_RFw model can achieve a leap-
frog improvement in the precision of the primary 
tissue trace procedure. Therefore, in feature engi-
neering, differential expression analysis is adopt-
ed to screen “specific” DEGs, which can fill the gap 
in the biology of machine learning algorithms and 
provide an experimental reference for machine 
learning engineers.

In this study, five evaluation indexes (accu-
racy, precision, sensitivity, specificity and F1 
Score) were used to comprehensively measure 
the multi-category classification ability of the 
machine learning model. The average accuracy, 
precision, sensitivity, specificity and F1 Score of 
the ReliefFk_RFw model are as high as 98.89%, 
99.90%, 99.11%, 99.53% and 99.36%, and the 
retrospective effect is even better than that of the 
popular medical aid methods of image parsing 
and deep learning in recent years. For example, Jin 
et al. developed a deep learning system based on 
preoperative CT images of gastric cancer patients, 
which was used to predict lymph node metasta-
ses of multiple lymph nodes. The results of image 
analysis showed excellent prediction accuracy in 
the external validation queue, but the sensitivi-
ty (0.743) and specificity (0.936) were still lower 
than 0.989 and 0.999 of the ReliefFk_RFw model 
in this study [31]. Doppalapudi et al. performed 
a feature-importance analysis to understand how 
factors related to lung cancer affected survival 
in patients. The classification accuracy of the re-
current neural network (RNN) model in the deep 
learning field is 71.18%, lower than the 99.53% of 
the ReliefFk_RFw model in this study [32]. Liu et al.  
explored the value of deep learning (DL) based on 
global digital mammography in the prediction of 
microcalcification malignancy in the Breast Imag-
ing Reporting and Data System (BI-RADS) 4. The 
combined DL model showed good sensitivity and 
specificity of 85.3% and 91.9%, respectively, when 
predicting the four types of malignant microcalci-
fications of BI-RADS in the test data set, but these 
values were still lower than the 98.9% and 99.9% 
of the ReliefFk_RFw model in this study [33].

In diagnosis and treatment, mature medical in-
struments are often used to determine the origin 
of tissues. Although machine learning methods 
have begun to be used for primary tracing, precise 
localization of specific cancers has not yet been 
studied. This study proposed for the first time that 
the improved ReliefFk_RFw model could be used to 
predict the origin of MRC tissue, accurately match 
the specific “DEGs” and fix the genetic relationship 
between the primary cancer, and assist physicians 
in diagnosis and treatment, which has consider-
able medical significance. At present, clinical prac-
tices mostly use immunohistochemical methods 
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to lock specific antigens (such as proteins, pep-
tides, enzymes, etc.) and colour primary sites to 
assist in tracing the origin [34]. Although suitable 
immunoenzymatic techniques have been devel-
oped to establish a high degree of sensitivity with 
the primary tissue, they are still only suitable for 
small-scale data analysis and are labour-intensive, 
making it difficult to overcome the accuracy bot-
tleneck [11]. CT and PET are the most convenient 
and rapid primary tissue tracing techniques at the 
present stage; they are powerful tools in medical 
imaging and can effectively distinguish benign and 
malignant tissues, but their low accuracy rates of 
20–27% and 24–40% need to be improved [12]. 
Therefore, a new machine learning model tracing 
technology is needed to replace such low-accura-
cy, labour-intensive and data-dependent tradition-
al detection technology. Tian et al. used RF and 
SVM models to screen biomarkers, and used min-
imum absolute contraction and selection operator  
(LASSO) regression analysis to construct multi-
gene signatures. Univariate and multivariate Cox 
regression analysis was used to explore the rela-
tionship between clinical features and prognosis, 
which promoted the personalized management of 
patients with kidney cancer, showing advantages 
such as high accuracy, convenience, universality, 
non-invasiveness and repeatability [35]. It can be 
seen that the participation of machine learning 
models in the diagnosis and treatment of kidney 
cancer is convenient, accurate and efficient, and 
can effectively guide medical decision-making and 
assist diagnosis and treatment.

Although the improved ReliefFk_RFw model 
can effectively trace the origin of MRC, there are 
still some limitations in experimental studies.  
(1) Due to the lack of conventional tissue sam-
ple data of osteosarcoma in the TCGA database, 
there are only 6 cancerType values predicted by 
the model (KIRC, KIRP, LUAD, LUSC, LIHC, PAAD). 
(2) The study was limited to the organ-specific or-
igin of MRC and did not consider the aggregation 
of origin outside the organ. For example, a study 
of unsupervised analysis of TCGA multi-genomic 
data suggested that primary malignant tissue may 
aggregate outside the organ of origin, or between 
unrelated organs, or as a heterogeneous tissue in-
dependent of existing medical tumour types [36].
(3) In addition, only internal cross-validation was 
used in this study. Although the repeatability of 
the ReliefFk_RFw model was verified, the porta-
bility and generalization of ReliefFk_RFw need to 
be verified. Future research will adopt internal and 
external verification methods. On the basis of en-
suring model stability (internal verification), exter-
nal verification such as spatial verification, time 
period verification and domain verification will be 
carried out.
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